We © Maths

## Welcome to

## the parent and carer session

## Everything you ever wanted to know about times tables

## The aims of this meeting

- Explain why multiplication table knowledge is important...
- How can your children learn them?
- Send you home with something useful
- Answer any questions you may have


All pupils to sit new times table test as part of KS2 Sats Pupils will expected to know all tables up to $12 \times 12$, with the skill measured using an "on-screen check" examination ... being rolled out across English primaries in 2017... But [Prof. Jo Boaler] said the message of timed tests was that being able to memorise things quickly was the same thing as being good at maths.

## What is multiplication?

| $\mathbf{X}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| $\mathbf{2}$ | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| $\mathbf{3}$ | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| $\mathbf{4}$ | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| $\mathbf{5}$ | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| $\mathbf{6}$ | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| $\mathbf{7}$ | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| $\mathbf{8}$ | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
| $\mathbf{9}$ | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| $\mathbf{1 0}$ | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| $\mathbf{1 1}$ | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| $\mathbf{1 2}$ | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

It's not just a multiplication grid. There is a lot that must come first.

## Early multiplication

The Language of Multiplication Methods

Lots of Groups of Times Multiply
Once, twice, three times... ten times...
....times as big, long, wide... and so on
Repeated addition

## Double

Pairs
How many in each group? How many altogether?

Drawing pictures, for example:


Drawing equal groups of objects.
In this case, 3 lots of $3=9$.
Drawing equal groups of objects.
In this case, 3 lots of $3=9$.


The Language of Multiplication

$\qquad$

## 佂


-




| The Language of Multiplication | Methods |  |
| :---: | :---: | :---: |
| X | Practical activities, for example lining up in pairs: | ary SC |

Practical activities, for example lining up in pairs:


d


$\square-$


 $\frac{5}{5 \mathrm{cho}}$


The Language of Multiplication X
Lots of Groups of Times Multiply
Once, twice, three times... ten times...
....times as big, long, wide... and so on
Repeated addition Double
Pairs
How many in each group?
How many in each grou
How many altogether?

## Early multiplication

2-2.

How many altogether?




## Early multiplication

The Language of Multiplication Methods

Lots of Groups of Times Multiply
Once, twice, three times... ten times...
....times as big, long, wide... and so on
Repeated addition
Pairs
How many in each group? How many altogether?

Practical problem solving, for example:

Lego features multiplication in the number of studs on each brick .

$\qquad$


Early multiplication


In this example, showing three lots of six, or, $3 \times 6=18$

The Language of Multiplication

Lots of Groups of Times Multiply Once, twice, three times... ten times...
....times as big, long, wide... and so on
Repeated addition Double
Pairs
How many in each group? How many altogether?

## X

How many altogether?


Using resources, such as a bead string:
$\square$ 0


Langnag

## Methods

$\qquad$ ,



## $-$

 '
## Early multiplication



Lots of Groups of Times Multiply
Once, twice, three times... ten times...
....times as big, long, wide... and so on
Repeated addition
Double
Pairs
How many in each group? How many altogether?

Using resources, such as a number line:

In this example, showing three lots of six, or, $3 \times 6=18$
Using resources, such as a number line:

$\qquad$
$\qquad$

## Early Multiplication - REPEATED ADDITION

Underpinning ideas

The children will already understand the ideas behind addition.

They will use this knowledge to help them, identifying that multiplication is adding the same number on again and again - repeated addition.

The children will use jottings and diagrams.

For example, $3 \times 4$

$3 \times 4$ is $4+4+4=12$
This can be shown on a number line:


Or a bead string:


## Array



## Number line

## As ever, it's all about...

 conceptual understanding
## Which tables? By when?

Year 2 - recall and use multiplication and division facts for the 2,5 and 10 multiplication tables

Year 3 - recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables

Year 4 - recall multiplication and division facts for multiplication tables up to $12 \times 12$ ( $6 \mathrm{~s}, 7 \mathrm{~s}, 9 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}$ )

Years 5 \& 6 - be able to apply these facts to help you work out other problems.
For example, if you know $56 \div 8=7$ then this can help you work out the answer to $0.56 \div 8$

## And...well, how?

GAMES!

## Strategies for learning

- Whole number sentence
- Out of order
- Tricks
- Using what you already know
- Mental flexibility
- Songs, raps, rhymes
- Securing the insecure facts

21 facts...

| 3 times table | 4 times table | 6 times table | 7 times table | 8 times table | 9 times table |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 3 \times 3= \\ 9 \end{gathered}$ | $\begin{gathered} 4 \times 4= \\ 16 \end{gathered}$ | $\begin{gathered} 6 \times 6= \\ 36 \end{gathered}$ | $\begin{array}{r} 7 \times 7= \\ 49 \end{array}$ | $\begin{gathered} 8 \times 8= \\ 64 \end{gathered}$ | $\begin{array}{r} 9 \times 9= \\ 81 \end{array}$ |
| $\begin{gathered} 3 \times 4= \\ 12 \end{gathered}$ | $\begin{gathered} 4 \times 6= \\ 24 \end{gathered}$ | $\begin{array}{r} 6 \times 7= \\ 42 \end{array}$ | $\begin{gathered} 7 \times 8= \\ 56 \end{gathered}$ | $\begin{gathered} 8 \times 9= \\ 72 \end{gathered}$ |  |
| $\begin{gathered} 3 \times 6= \\ 18 \end{gathered}$ | $\begin{array}{r} 4 \times 7= \\ 28 \end{array}$ | $\begin{gathered} 6 \times 8= \\ 48 \end{gathered}$ | $\begin{array}{r} 7 \times 9= \\ 63 \end{array}$ |  |  |
| $\begin{gathered} 3 \times 7 \\ 21 \end{gathered}$ | $\begin{gathered} 4 \times 8= \\ 32= \end{gathered}$ | $\begin{gathered} 6 \times 9= \\ 54 \end{gathered}$ |  |  |  |
| $\begin{array}{r} 3 \times 8= \\ 24 \end{array}$ | $\begin{gathered} 4 \times 9= \\ 36 \end{gathered}$ |  |  |  |  |
| $\begin{gathered} 3 \times 9 \\ 27 \end{gathered}=$ | But don't forget $\times 11$ and $\times 12$ facts |  |  |  |  |

Times Tables Answer Accuracy


Multiplier
'Why is 48 so hard to remember?'
Mike J Smith, Sue Teague ATM July 2014

Times Tables Time Taken



# And when you've got them to $12 \times 12$ ? 

## If you know

$$
56 \div 8=7
$$

then this can help you work out the answer to

$$
\begin{gathered}
0.56 \div 8 \\
5.6 \div 0.8 \\
560 \div 0.08
\end{gathered}
$$

And when you've got them to $12 \times 12$ ?

$$
48 \div \square=8
$$

$$
\square \div 11=12
$$

## Other resources to access

## www.mymaths.co.uk

## www.sumdog.co.uk

## www.transum.com/Tables/Times_Tables.asp

www.mathsisfun.com/numbers/math-trainermultiply.html

