Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is policy. equal to' 'is the same as'

Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used) Calculate the difference between 8 and 5

Bridging ten using ten frames.

Column method using base 10 or straws.

Children draw the cubes / other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

Children to represent the base 10 pictorially.
 on to find the difference! eg. When finding change from 50p

Counting on to find the difference is a great way to check our answers! Especially when the numbers are close together.

Conceptual variation: different ways to ask children to solve 391-186

Raj spent $£ 391$, Timmy spent £186.
How much more did Raj spend?
Calculate the difference
between 391 and 186

Missing digit calculations

Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Key language: share, group, divide, divided by, half.

3 groups of 2

Repeated addition using Cuisenaire rods above a ruler/ in a Cuisenaire track.

Children represent repeated addition
pictorially.

2 digit $\div 1$ digit with remainders using counters. Cuisenaire rods, above a ruler, can also be used.
$13 \div 4$
There are 3 groups of 4 with 1 left over.

Sharing using place value counters $42 \div 3=14$
$\mid 200000$

$10 \mathbf{s}$	$1 \mathbf{s}$

		$=14$	800000	
10s	1 s		10s	1s
\bigcirc	0000		-	
-	0000		-	
-	0000		-	

Children represent counters pictorially.

Represent the place value counters pictorially.

$13 \div 4=3$ remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line

Children to be able to make sense of the place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

It is inefficient to use 'sharing' to solve problems like $144 \div 12$. 'Sharing' between 12 would take a long time!

Instead, we can use 'grouping to find our share' eg. When sharing 144 sweets between 12: for each group of 12 sweets, I get one sweet.

Use key multiplication facts and repeated subtraction

Short division using place value counters or base ten.

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

1000s	100s	10s	Is
\bigcirc	8000	0000	0000
1000s	100s	10s	Is
		左	-0ण0

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds	
into groups of 12 which leaves	
with 1 hundred.	$1 2 \longdiv { 2 5 4 4 }$
	$\frac{24}{1}$

Long division using place value counters
$2544 \div 12$

Children to solve the calculation using the short division scaffold.

${ }_{5} \stackrel{123}{61^{\prime} 5}$
 ${ }_{5} \begin{gathered}123 \\ 61^{1} 5\end{gathered}$

Draw the children's attention to what this model really represents.

Represent the place value counters pictorially.

$\begin{array}{lr}\text { After exchanging the hundred, we } & 1 2 \longdiv { 2 5 1 } \\ \text { have } 14 \text { tens. We can group } 12 \text { tens } \\ \text { into a group of } 12 \text {, which leaves } 2 \text { tens. } & \frac{24}{14} \\ & \frac{12}{2}\end{array}$

1000s	100s	10s	Is
		3008	

After exchanging the 2 tens, we
have 24 ones. We can group 24 ones
into 2 group of 12 , which leaves no remainder.

Conceptual variation: different ways to ask children to solve $615 \div 5$

Using the part whole model below, How can you divide 615 by 5 without using short division?	I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?	$\begin{aligned} & 5 \longdiv { 6 1 5 } \\ & 615 \div 5= \\ & \mathbf{i}=\mathbf{i}=615 \div 5 \end{aligned}$	What is the calculation? What is the answer?		
			100 s	10 s	15
	615 pupils need to be put into 5 groups. How many will be in each group?			$\begin{aligned} & 000 \\ & -00 \end{aligned}$	

