
Our policy us based on the **White Rose Maths** policy.

Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'

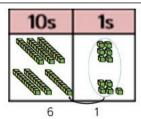
Regrouping to make 10 using ten frames, Numicon or **straws**.

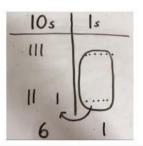
Children draw the ten frame.

Children to develop an understanding of equality.

TO + O using base ten or **straws**.

10s | 1s

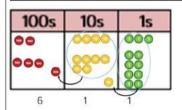

Children to represent the base ten. eg. Lines for tens and dots for ones.



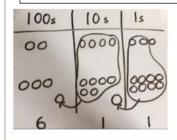
Formal method

and the second	4	1
+		8
	4	9

TO + TO using base ten or **straws**.

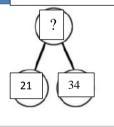


Formal method


Use straws to demonstrate regrouping

36 +25 61 Use of place value counters to add HTO + TO and HTO + HTO

When there are 10 ones in the 1s column, we exchange for 1 ten, when there are 10 tens in the 10s column, we exchange for 1 hundred.


Children to represent the counters in a place value chart, circling when they make an exchange.

243

+368 611

Conceptual variation: different ways to ask children to solve 21 + 34

	3
21	34

Word problems:

In year 3, there are 21 children and in year 4, there are 34 children.

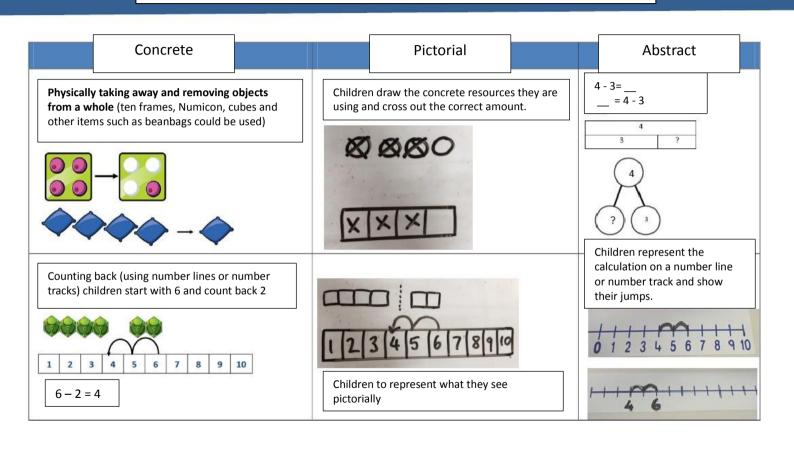
How many children in total?

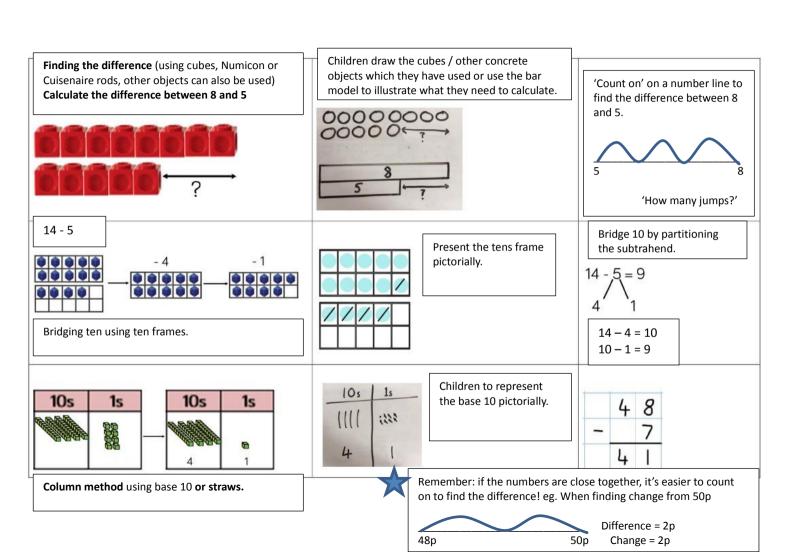
21 + 34 = 55. Prove it

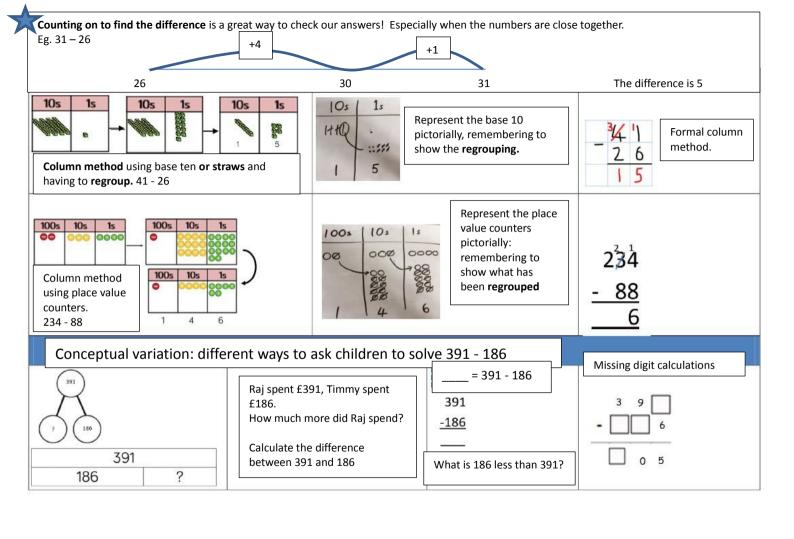
21

+34

Calculate the sum of twenty-one and thirty-four.

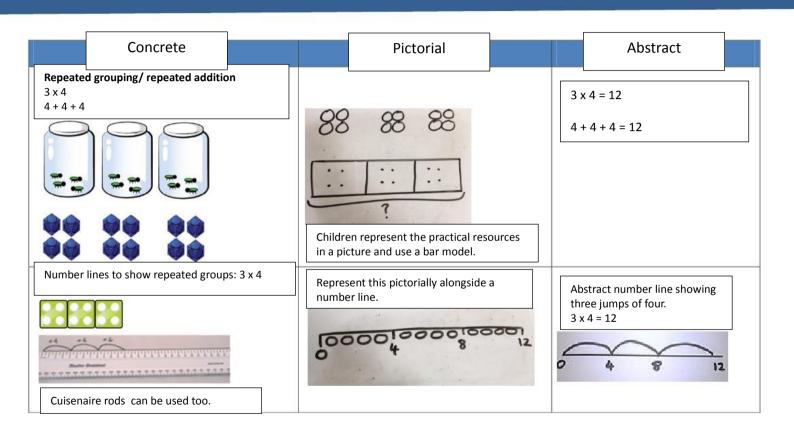



Missing digit problems


10s	1s
00	0
000	?
?	5

Subtraction

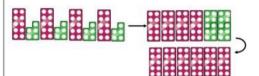
Key language: take away, less than, the difference, subtract, minus, fewer, decrease.



Multiplication

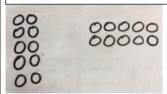
Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

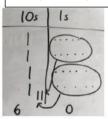
Use arrays to illustrate commutativity. Counters and other objects can also be used $2 \times 5 = 5 \times 2$



2 lots of 5

5 lots of 2


Partition to multiply using Numicon, base 10 or Cuisenaire rods 4 x 15


Formal column method with place value counters (base ten can also be used) 3 x 23

10s	1s
000	000
6	9

Children to represent the arrays pictorially.

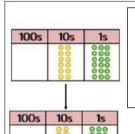
Children to represent the concrete manipulatives pictorially.

Children to be able to use an array to write a range of calculations.

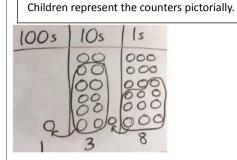
 $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5

Grid multiplication is an example of partitioning to multiply.

4 x 15


Х	10	5
4	40	20

10s	Is
00	000
00	000
00	000


Children to represent the counters pictorially.

Children to record what it is they are doing to show understanding.

23 is made of 20 and 3 $3 \times 3 = 9$ $20 \times 3 = 60$ 60 + 9 = 69

Formal column method with place value counters. 6 x 23

 $6 \times 23 =$

Formal written method

23

× 6 138

1 1

When children start to multiple 3 digits by 3 digits and 4 digits by 2 digits, they should be confident with the abstract.

To get 744 they have solved 6 x 124

To get 2480 they have solved 20 x 124

Answer: 3224

Conceptual variation: different ways to ask children to solve 6 x 23

23 23 23 23 23 23

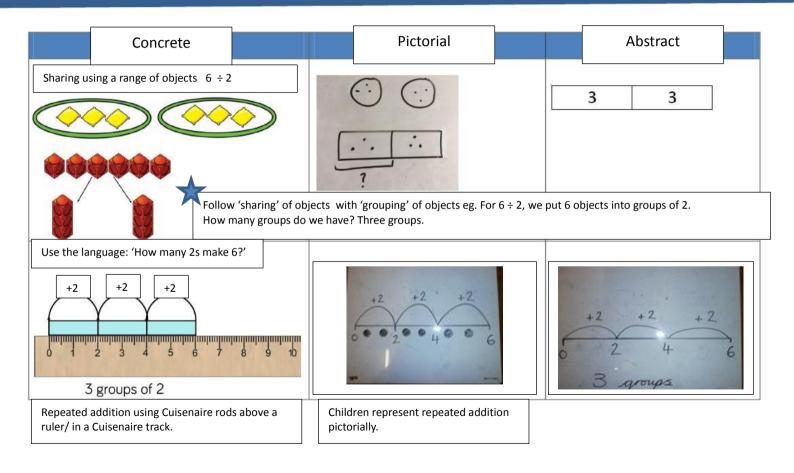
?

Mai had to swim 23 lengths, 6 times a week.

How many lengths did she swim in one week?

With the counters, prove that 6 x 23 = 138

Find the product of 6 and 23 6 x 23 =


 $= 6 \times 23$ $6 \qquad 23$ $\times 23 \qquad \times 6$

What is the calculation? What is the product?

100s	10s	1s
	000000	000 000 000 000

Division

Key language: share, group, divide, divided by, half.

2 digit ÷ 1 digit with remainders using counters. Cuisenaire rods, above a ruler, can also be used. 13 ÷ 4 There are 3 groups of 4 with 1 left over. Sharing using place value counters $42 \div 3 = 14$ 000000 000 10s 15 15 10s

10s

15

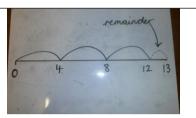
0000

0000

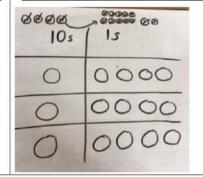
0000

000000

000000

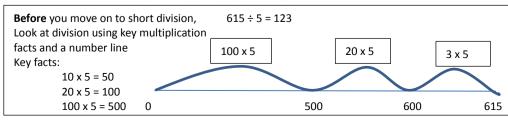

15

10s


Children represent counters pictorially.

13 ÷ 4 = 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line

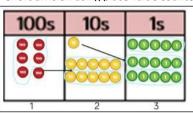
Represent the place value counters pictorially.



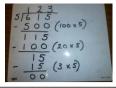
Children to be able to make sense of the place value counters and write calculations to show the process.

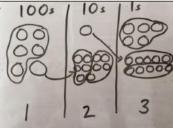
$$42 \div 3$$

 $42 = 30 + 12$
 $30 \div 3 = 10$
 $12 \div 3 = 4$
 $10 + 4 = 14$


It is inefficient to use 'sharing' to solve problems like 144 ÷ 12. 'Sharing' between 12 would take a long time!

Instead, we can use 'grouping to find our share' eg. When sharing 144 sweets between 12: for each group of 12 sweets, I get one sweet.




Use key multiplication facts and repeated subtraction

Short division using place value counters or base ten.

- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to solve the calculation using the short division scaffold.

123 5 615

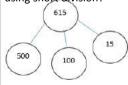
Draw the children's attention to what this model really represents.

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

Long division using place value counters $2544 \div 12$

1000s	100s	10s	1s
	0000	0000	0000


After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

1000s	100s	10s	1s
	0000	0000	8888
	9000		8888

After exchanging the 2 tens, we 12 $\overline{)2544}$ have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder. $\overline{)12}$ $\overline{)2544}$ $\overline{)12}$ $\overline{)24}$ $\overline{)24}$ $\overline{)24}$ $\overline{)24}$

Conceptual variation: different ways to ask children to solve 615 ÷ 5

Using the part whole model below, How can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615

 $615 \div 5 =$

What is the calculation? What is the answer?

100s	10s	1s
000	90000	00000 00000 00000